Динамические модели в биологии

Реестр моделей

Базовые модели математической биофизики

Конкуренция. Отбор

Биологические системы вступают во взаимодействие друг с другом на всех уровнях, будь то взаимодействие биомакромолекул в процессе биохимических реакций, или взаимодействие видов в популяциях. Взаимодействие может протекать в структурах, тогда система может быть охарактеризована определенным набором состояний, так происходит на уровне субклеточных, клеточных и организменных структур. Кинетика процессов в структурах в математических моделях как правило описывается с помощью систем уравнений для вероятностей состояний комплексов.

В случае, когда взаимодействие происходит случайно, его интенсивность определяется концентрацией взаимодействующих компонентов и их подвижностью - обобщенной диффузией. Именно такие представления приняты в базовых моделях взаимодействия видов. Классической книгой, в которой рассматриваются математические модели взаимодействия видов стала книга Вито Вольтерра "Математическая теория борьбы за существование" (1931) {{[75101 ]}}. В ней постулированы в математической форме свойства биологических объектов и их взаимодействий, которые затем исследуются как математические объекты.

Вито Вольтерра (1860-1940) завоевал мировую известность своими работами в области интегральных уравнений и функционального анализа. Кроме чистой математики его интересовали вопросы применения математических методов в биологии, физике, социальных науках. В годы службы в ВВС в Италии, он много работал над вопросами военной техники и технологии (задачи баллистики, бомбометания, эхолокации). В этом человеке сочетался талант ученого и темперамент активного политика, принципиального противника фашизма. Он был единственным итальянским сенатором, проголосовавшим против передачи власти Муссолини. Когда в годы фашистской диктатуры в Италии Вольтерра работал во Франции, Муссолини, желая привлечь на свою сторону всемирно известного ученого, предлагал ему различные высокие посты в фашистской Италии, но всегда получал решительный отказ. Антифашистская позиция привела Вольтерра к отказу от кафедры в Римском университете и от членства в итальянских научных обществах.

Серьезно вопросами динамики популяций В. Вольтерра стал интересоваться с 1925 г. после бесед с молодым зоологом Умберто Д’Анкона, будущим мужем его дочери, Луизы. Д’Анкона, изучая статистику рыбных рынков на Адриатике, установил любопытный факт: когда в годы первой мировой войны (и сразу вслед за ней) интенсивность промысла резко сократилась, то в улове увеличилась относительная доля хищных рыб. Такой эффект предсказывался моделью «хищник-жертва», предложенной Вольтерра.

Вольтерра предположил по аналогии со статистической физикой, что интенсивность взаимодействия пропорциональна вероятности встречи (вероятности столкновения молекул), то есть произведению концентраций. Это и некоторые другие предположения позволили построить математическую теорию взаимодействия популяций одного трофического уровня (конкуренция, симбиоз) или разных трофических уровней (хищник - жертва, паразит - хозяин).

Простейшая из моделей - модель отбора на основе конкурентных отношений - работает при рассмотрении конкурентных взаимодействий любой природы: биохимических соединений, различного типа оптической активности, конкурирующих клеток, особей, популяций. Ее модификации применяются для описания конкуренции в экономике. Пусть имеется два совершенно одинаковых вида с одинаковой скоростью размножения, которые являются антагонистами, то есть при встрече они угнетают друг друга. Модель их взаимодействия может быть записана в виде (Чернавский, 1984):

dx / dt = ax - bxy
dy / dt = ay - bxy
(7)

Согласно такой модели, симметричное состояние сосуществования обоих видов является неустойчивым, один из взаимодействующих видов обязательно вымрет, а другой размножится до бесконечности. Введение ограничения на субстрат – (типа 5) – или системного фактора, ограничивающего численность каждого из видов – (типа 2) – позволяет построить модели, в которых один из видов выживает и достигает определенной стабильной численности. Они описывают известный в экспериментальной экологии принцип конкуренции Гаузе, в соответствии с которым в каждой экологической нише выживает только один вид.

В случае, когда виды обладают различной собственной скоростью роста, коэффициенты при автокаталитических членах в правых частях уравнений будут различными, а фазовый портрет системы становится несимметричным. При различных соотношениях параметров в такой системе возможно как выживание одного из двух видов и вымирание второго (если взаимное угнетение более интенсивно, чем саморегуляция численности), так и сосуществование обоих видов, в случае, когда взаимное угнетение меньше, чем самоограничение численности каждого из видов.

 

Дополнительная информация:

 

В начало

© 2001-2017 Кафедра биофизики МГУ